Learn about cannabis, enjoy pics of cannabis
  • Home
  • About
  • Contact
  • Blog

Learn about cannabis enjoy pics of cannabis

Pic of the week

2/12/2019

0 Comments

 
0 Comments

Weekly Weed Porn Post

1/25/2019

0 Comments

 
My favorite type of flower.

​
Picture
0 Comments

This is beautiful

10/5/2018

0 Comments

 
Picture
0 Comments

What Cannabanoids are in Cannabis?

9/17/2018

0 Comments

 
The field of cannabis research is vast and diverse. From biochemical studies of the plant itself to physiological and chemical studies of its pharmacology to psychological and social research into its effects, researchers studying cannabis produce the knowledge at the foundation of industry innovation and public policy. Yet perhaps the most important research being done in this new era of expanded access to legal cannabis pertains to just one facet of the plant: the humble cannabinoid. Cannabinoids, the chemicals that qualify the plant as a drug, are the sine qua non of the commercial and medical significance of cannabis.
The Ultimate Guide To The Cannabinoids In CannabisDespite their importance, however, our scientific understanding of cannabinoids has been stunted, in the United States, by prohibition and elsewhere, by restrictive regulations. The result is a literature on the subject that’s patchy and inconsistent, yet reflective of the market’s interest in THC and CBD. Toppling regulations and expanding legalization, however, have made it possible for researchers to conduct more thorough investigations into other cannabinoids.
Exploring the world of cannabinoids can be rewarding for anyone interested in cultivating a more intentional relationship with cannabis. Knowledge about precisely how and why certain strains and products produce their effects is empowering.
For those ready to take the plunge, here’s the ultimate guide to the cannabinoids in cannabis. We start with an overview of cannabinoids in general, how and why they react with our bodies, and then dive into the most important cannabinoids. As a bonus for all you vape-fans and dab-heads, we list the boiling point for each cannabinoid for easy reference.
What is a Cannabinoid?

Cannabinoids get their name less from what they are and more from what they do. They’re a class of chemical compounds the cannabis plant naturally produces. But they have the unique property of being able to interact with receptors in our cells. These interactions, through a complex series of pathways, alter the release of chemicals in the brain. These alterations, in turn, produce a wide array of effects throughout the body.
According to a recent tally, scientists have successfully isolated 113 discrete cannabinoids. Many of them exhibit their own distinct effects. Of those 113, THC, CBD and CBN have the most substantial body of research behind them. CBD and CBN were to first cannabinoids researchers identified when they discovered cannabinoids in the 1940s. It would take until 1964 for researchers to correctly determine the structure of THC.
From a scientific and legal perspective, there’s a difference between the cannabinoids the plant naturally produces and those produced synthetically. The former are called “phytocannabinoids.” Phytocannabinoids are the focus of this guide.
What is The Endocannabinoid System?The endogenous cannabinoids system, or endocannabinoid system (ECS), is the network of cell receptors throughout the body that interact with cannabinoids. Without the system, cannabinoids would do nothing for our bodies and cannabis would be irrelevant as a drug. Although, they are still quite useful as a crop.
It would be a mistake, however, to think that the ECS only exists to react with the cannabinoids in marijuana. The human body, in fact, produces its own cannabinoids, called endocannabinoids.
Interestingly, we know less about the cannabinoids our own bodies produce than we do about those the marijuana plant produces. And that’s because the discovery of cannabinoid receptors didn’t take place until 1988. It was this important discovery that initiated the search for our bodies own endocannabinoids.
Until then, scientists believed a kind of generic interaction between cells and plant cannabinoids caused the psychological and physiological effects of marijuana. Now, we understand that there are highly specific chemical mechanisms responsible for those effects.
Two decades later, though, we still know very little about the how our bodies actually make their own cannabinoids. But we do know what some of them are. Studying how our bodies’ endocannabinoids interact with the ECS and what effects these interactions is crucial for advancing our understanding of the therapeutic and recreational effects the phytocannabinoids in marijuana produce.

Most of us know about THC and CBD but what else is there?
CBG



Mature cannabis plants only posses 1 percent or less of CBG, or cannabigerol. But that’s not because the plant doesn’t produce very much of it. Rather, maturing plants produce quite a lot of CBG. Eventually, however, virtually all of the CBG produced initially has converted to other cannabinoids. Hence the nicknames CBG has earned. Some call it the “mother cannabinoid,” while others consider it the “stem cell” cannabinoid.
CBG converts into many derivative cannabinoids. But it primarily turns into THC and CBD. This is what makes the cannabigerol cannabinoid so important. Figuring out which factors control which path CBG will take has helped plant scientists “direct” cannabinoid production, leading to marijuana strains with high CBD and low THC and vice versa. CBG itself is non-psychoactive.
Excitingly, CBG has also shown a number of promising medical applications. Research has suggested CBG could help treat cancer and a variety of bowel and bladder diseases, glaucoma, pain, anxiety, and inflammation.


CBN
CBN is unique among the cannabinoids listed here for one reason. It is the only one that does not derive from cannabigerol (CBG), the “stem cell” cannabinoid. Rather, CBN forms from the natural degradation of THC.
Oxidation, light and exposure to air cause THC to degrade. Dried marijuana flower, in other words, is constantly losing THC as it breaks down into CBN. That’s why proper storage is so key to maintaining the potency of dried cannabis buds. Since cannabinol is effectively non-psychoactive, its presence represents a loss of potency. Fresh plants an dried marijuana flower, therefore, possess only trace amounts of CBN.
Cannabinol, despite being a sign that weed has gone bad, does have some important medical potential. It’s a sedative, works as an antibiotic, and even shows promising results as an analgesic.


​












The field of cannabis research is vast and diverse. From biochemical studies of the plant itself to physiological and chemical studies of its pharmacology to psychological and social research into its effects, researchers studying cannabis produce the knowledge at the foundation of industry innovation and public policy. Yet perhaps the most important research being done in this new era of expanded access to legal cannabis pertains to just one facet of the plant: the humble cannabinoid. Cannabinoids, the chemicals that qualify the plant as a drug, are the sine qua non of the commercial and medical significance of cannabis.
The Ultimate Guide To The Cannabinoids In CannabisDespite their importance, however, our scientific understanding of cannabinoids has been stunted, in the United States, by prohibition and elsewhere, by restrictive regulations. The result is a literature on the subject that’s patchy and inconsistent, yet reflective of the market’s interest in THC and CBD. Toppling regulations and expanding legalization, however, have made it possible for researchers to conduct more thorough investigations into other cannabinoids.
Exploring the world of cannabinoids can be rewarding for anyone interested in cultivating a more intentional relationship with cannabis. Knowledge about precisely how and why certain strains and products produce their effects is empowering.
For those ready to take the plunge, here’s the ultimate guide to the cannabinoids in cannabis. We start with an overview of cannabinoids in general, how and why they react with our bodies, and then dive into the most important cannabinoids. As a bonus for all you vape-fans and dab-heads, we list the boiling point for each cannabinoid for easy reference.
What is a Cannabinoid?
Cannabinoids get their name less from what they are and more from what they do. They’re a class of chemical compounds the cannabis plant naturally produces. But they have the unique property of being able to interact with receptors in our cells. These interactions, through a complex series of pathways, alter the release of chemicals in the brain. These alterations, in turn, produce a wide array of effects throughout the body.
According to a recent tally, scientists have successfully isolated 113 discrete cannabinoids. Many of them exhibit their own distinct effects. Of those 113, THC, CBD and CBN have the most substantial body of research behind them. CBD and CBN were to first cannabinoids researchers identified when they discovered cannabinoids in the 1940s. It would take until 1964 for researchers to correctly determine the structure of THC.
From a scientific and legal perspective, there’s a difference between the cannabinoids the plant naturally produces and those produced synthetically. The former are called “phytocannabinoids.” Phytocannabinoids are the focus of this guide.
What is The Endocannabinoid System?The endogenous cannabinoids system, or endocannabinoid system (ECS), is the network of cell receptors throughout the body that interact with cannabinoids. Without the system, cannabinoids would do nothing for our bodies and cannabis would be irrelevant as a drug. Although, they are still quite useful as a crop.
It would be a mistake, however, to think that the ECS only exists to react with the cannabinoids in marijuana. The human body, in fact, produces its own cannabinoids, called endocannabinoids.
Interestingly, we know less about the cannabinoids our own bodies produce than we do about those the marijuana plant produces. And that’s because the discovery of cannabinoid receptors didn’t take place until 1988. It was this important discovery that initiated the search for our bodies own endocannabinoids.
Until then, scientists believed a kind of generic interaction between cells and plant cannabinoids caused the psychological and physiological effects of marijuana. Now, we understand that there are highly specific chemical mechanisms responsible for those effects.
Two decades later, though, we still know very little about the how our bodies actually make their own cannabinoids. But we do know what some of them are. Studying how our bodies’ endocannabinoids interact with the ECS and what effects these interactions is crucial for advancing our understanding of the therapeutic and recreational effects the phytocannabinoids in marijuana produce.


CBG (Cannabigerol)
Mature cannabis plants only posses 1 percent or less of CBG, or cannabigerol. But that’s not because the plant doesn’t produce very much of it. Rather, maturing plants produce quite a lot of CBG. Eventually, however, virtually all of the CBG produced initially has converted to other cannabinoids. Hence the nicknames CBG has earned. Some call it the “mother cannabinoid,” while others consider it the “stem cell” cannabinoid.
CBG converts into many derivative cannabinoids. But it primarily turns into THC and CBD. This is what makes the cannabigerol cannabinoid so important. Figuring out which factors control which path CBG will take has helped plant scientists “direct” cannabinoid production, leading to marijuana strains with high CBD and low THC and vice versa. CBG itself is non-psychoactive.
Excitingly, CBG has also shown a number of promising medical applications. Research has suggested CBG could help treat cancer and a variety of bowel and bladder diseases, glaucoma, pain, anxiety, and inflammation.
CBN (Cannabinol) / 365°FCBN is unique among the cannabinoids listed here for one reason. It is the only one that does not derive from cannabigerol (CBG), the “stem cell” cannabinoid. Rather, CBN forms from the natural degradation of THC.
Oxidation, light and exposure to air cause THC to degrade. Dried marijuana flower, in other words, is constantly losing THC as it breaks down into CBN. That’s why proper storage is so key to maintaining the potency of dried cannabis buds. Since cannabinol is effectively non-psychoactive, its presence represents a loss of potency. Fresh plants an dried marijuana flower, therefore, possess only trace amounts of CBN.
Cannabinol, despite being a sign that weed has gone bad, does have some important medical potential. It’s a sedative, works as an antibiotic, and even shows promising results as an analgesic.
CBC (Cannabichromene) / 428°F
Cannabichromene is, like CBD, a non-psychoactive cannabinoid. Unlike CBD however, CBC has no effect on the psychoactive effects of THC. Rather, it appears that THC influences CBC in a way that enhances its anti-inflammatory activity.
This interplay between two cannabinoids, in this case, THC and CBC, is a good example of the phenomenon researchers call the “ensemble effect.” The ensemble effect postulates that the efficacy of a given cannabinoid depends on interactions with other cannabinoids.
Hence the “whole plant” approach advocated by many cannabis caregivers. Isolated extractions and preparations of a single cannabinoid, they argue, eliminate these important inter-cannabinoid relationships.
Additionally, CBC is unique for the fact that it binds to receptors beyond those of the ECS. Researchers believe these interactions may be behind the medicinal properties of CBC. In the consumer market, CBC’s anti-inflammatory, anti-fungal and antibiotic properties make extractions of this cannabinoid popular for use in cannabis topicals.
 












The field of cannabis research is vast and diverse. From biochemical studies of the plant itself to physiological and chemical studies of its pharmacology to psychological and social research into its effects, researchers studying cannabis produce the knowledge at the foundation of industry innovation and public policy. Yet perhaps the most important research being done in this new era of expanded access to legal cannabis pertains to just one facet of the plant: the humble cannabinoid. Cannabinoids, the chemicals that qualify the plant as a drug, are the sine qua non of the commercial and medical significance of cannabis.
The Ultimate Guide To The Cannabinoids In CannabisDespite their importance, however, our scientific understanding of cannabinoids has been stunted, in the United States, by prohibition and elsewhere, by restrictive regulations. The result is a literature on the subject that’s patchy and inconsistent, yet reflective of the market’s interest in THC and CBD. Toppling regulations and expanding legalization, however, have made it possible for researchers to conduct more thorough investigations into other cannabinoids.
Exploring the world of cannabinoids can be rewarding for anyone interested in cultivating a more intentional relationship with cannabis. Knowledge about precisely how and why certain strains and products produce their effects is empowering.
For those ready to take the plunge, here’s the ultimate guide to the cannabinoids in cannabis. We start with an overview of cannabinoids in general, how and why they react with our bodies, and then dive into the most important cannabinoids. As a bonus for all you vape-fans and dab-heads, we list the boiling point for each cannabinoid for easy reference.
What is a Cannabinoid?
Cannabinoids get their name less from what they are and more from what they do. They’re a class of chemical compounds the cannabis plant naturally produces. But they have the unique property of being able to interact with receptors in our cells. These interactions, through a complex series of pathways, alter the release of chemicals in the brain. These alterations, in turn, produce a wide array of effects throughout the body.
According to a recent tally, scientists have successfully isolated 113 discrete cannabinoids. Many of them exhibit their own distinct effects. Of those 113, THC, CBD and CBN have the most substantial body of research behind them. CBD and CBN were to first cannabinoids researchers identified when they discovered cannabinoids in the 1940s. It would take until 1964 for researchers to correctly determine the structure of THC.
From a scientific and legal perspective, there’s a difference between the cannabinoids the plant naturally produces and those produced synthetically. The former are called “phytocannabinoids.” Phytocannabinoids are the focus of this guide.
What is The Endocannabinoid System?The endogenous cannabinoids system, or endocannabinoid system (ECS), is the network of cell receptors throughout the body that interact with cannabinoids. Without the system, cannabinoids would do nothing for our bodies and cannabis would be irrelevant as a drug. Although, they are still quite useful as a crop.
It would be a mistake, however, to think that the ECS only exists to react with the cannabinoids in marijuana. The human body, in fact, produces its own cannabinoids, called endocannabinoids.
Interestingly, we know less about the cannabinoids our own bodies produce than we do about those the marijuana plant produces. And that’s because the discovery of cannabinoid receptors didn’t take place until 1988. It was this important discovery that initiated the search for our bodies own endocannabinoids.
Until then, scientists believed a kind of generic interaction between cells and plant cannabinoids caused the psychological and physiological effects of marijuana. Now, we understand that there are highly specific chemical mechanisms responsible for those effects.
Two decades later, though, we still know very little about the how our bodies actually make their own cannabinoids. But we do know what some of them are. Studying how our bodies’ endocannabinoids interact with the ECS and what effects these interactions is crucial for advancing our understanding of the therapeutic and recreational effects the phytocannabinoids in marijuana produce.
Cannabinoid Receptors Explained
As previously noted, the network of receptors which comprise the ECS is distributed throughout the body. And it consists of two classes of receptors found in particular locations in the body.
One of the classes of receptors exists primarily in the brain. These are cannabinoid receptor type 1, or CB1 receptors. Besides the brain, these receptors hang out in parts of the eye and retina and in both male and female reproductive systems.
The second class of receptors, cannabinoid receptor type 2, exist primarily in the immune system. CB2 receptors exist in the greatest concentration in the spleen. Current research involving animal models indicates that these receptors are responsible for the significant anti-inflammatory properties of cannabis, especially the CBD cannabinoid. They may also be the cause of many other medicinal and therapeutic effects.
There are the two known types of cannabinoid receptors. However, there is increasing evidence that there may be yet more types.
Phytocannabinoids: The Most Important Cannabinoids in Cannabis PlantsThe cannabis plant produces its own cannabinoids. These naturally occurring chemicals go by the name of “phytocannabinoids.” Because these chemicals are structurally analogous to the endocannabinoids our own bodies produce, they are able to bind with the CB1 and CB2 receptors throughout the endocannabinoid system. But because they are not the same, they can produce unique effects specific to cannabis, such as the high recreational users seek or the pain-relief medical users seek.
Cannabis plants produce their cannabinoids in the highest concentrations in a thick, sticky resin. The resin itself is the product of gland-like structures called trichomes. Trichomes appear on the flowering buds of cannabis plants. They look like tiny crystal mushrooms and are extremely delicate. The size and density of trichomes on cannabis flowers is a key indicator of the plant’s cannabinoid concentration. More trichomes means more cannabinoid-rich resin.
Cannabinoids, of course, do not exist only in trichomes. They can be found in varying concentrations throughout the leafy structures of the plant. But they exist in the highest concentrations in the flowering parts of female marijuana plants.
Our guide to the most important cannabinoids in cannabis begins with the most studied and significant cannabinoids, CBD and THC. Then we take a look at other, lesser-appreciated cannabinoids, highlighting their uniqueness and potential future appeal.
THC (Tetrahydrocannabinol) / 315°F
If you know the name of a single cannabinoid, it’s probably THC. And for good reason. Tetrahydrocannabinol is one of the very few cannabinoids that are psychoactive. Psychoactivity indicates that a cannabinoid can produce a euphoric sensation commonly called a “high.” And THC is the only psychoactive cannabinoid that exists in a high enough concentration in dried marijuana flower to make smoking or ingesting the plant worth it.
Hence, THC is the most sought after cannabinoid for recreational cannabis users. In fact, many of the current trends among recreational cannabis users involve perfecting the extraction and consumption of THC. The rise in the popularity of cannabis concentrates, extracts that remove cannabinoids from excess plant matter, is just one example.
THC produces its psychoactive effects by binding to CB1 receptors in the brain. This interaction induces an alteration in the release of chemicals in the brain. These alterations, which notably include an increase in dopamine release, cause the variety of psychological effects recreational cannabis users enjoy. Alterations in memory, movement, mood, perception and cognition all result from the binding of THC to CB1 receptors. These psychological effects also open doors to many therapeutic uses for THC.
So much more could be said about tetrahydrocannabinol, the psychoactive cannabinoid that dominates much of the cannabis industry worldwide. Check out our complete guide to THC.
CBD (Cannabidiol) / 356°FWhen it comes to the medicinal applications of cannabis, no cannabinoid is more significant than cannabidiol. Among the first cannabinoids discovered, CBD continues to be one of the most intensively researched chemicals in the marijuana plant.
Crucially, CBD is non-psychotropic. This means that cannabidiol does not have any of the psychoactive effects of THC. Yet CBD goes one step further. It’s not just that CBD doesn’t produce a high, it also counteracts the cognitive effects of THC.
The importance of CBD’s lack of psychoactivity cannot be overstated. For one, it makes the cannabinoid an exception to laws that ban marijuana on the basis of the presence of THC. This accounts for why research into cannabinol has advanced further than research into other cannabinoids. And it also accounts for the wide availability of legal CBD-based medicines and supplements. Many medical cannabis patients find the psychoactive effects of THC undesirable. Thus, CBD-only products offer the medical and therapeutic benefits of cannabis, without the high.
CBD is primarily extracted from hemp plants, which possess just trace amounts of THC. But breeders have also begun cultivating CBD-dominant strains of cannabis. These CBD-dominant, or 1:1 THC-CBD strains, are increasingly popular among medical cannabis patients.
The well-documented medical applications of CBD are too numerous to detail here. Check out our complete guide to CBD to learn all about the exciting research into CBD.
CBG (Cannabigerol)
Mature cannabis plants only posses 1 percent or less of CBG, or cannabigerol. But that’s not because the plant doesn’t produce very much of it. Rather, maturing plants produce quite a lot of CBG. Eventually, however, virtually all of the CBG produced initially has converted to other cannabinoids. Hence the nicknames CBG has earned. Some call it the “mother cannabinoid,” while others consider it the “stem cell” cannabinoid.
CBG converts into many derivative cannabinoids. But it primarily turns into THC and CBD. This is what makes the cannabigerol cannabinoid so important. Figuring out which factors control which path CBG will take has helped plant scientists “direct” cannabinoid production, leading to marijuana strains with high CBD and low THC and vice versa. CBG itself is non-psychoactive.
Excitingly, CBG has also shown a number of promising medical applications. Research has suggested CBG could help treat cancer and a variety of bowel and bladder diseases, glaucoma, pain, anxiety, and inflammation.
CBN (Cannabinol) / 365°FCBN is unique among the cannabinoids listed here for one reason. It is the only one that does not derive from cannabigerol (CBG), the “stem cell” cannabinoid. Rather, CBN forms from the natural degradation of THC.
Oxidation, light and exposure to air cause THC to degrade. Dried marijuana flower, in other words, is constantly losing THC as it breaks down into CBN. That’s why proper storage is so key to maintaining the potency of dried cannabis buds. Since cannabinol is effectively non-psychoactive, its presence represents a loss of potency. Fresh plants an dried marijuana flower, therefore, possess only trace amounts of CBN.
Cannabinol, despite being a sign that weed has gone bad, does have some important medical potential. It’s a sedative, works as an antibiotic, and even shows promising results as an analgesic.
CBC (Cannabichromene) / 428°F
Cannabichromene is, like CBD, a non-psychoactive cannabinoid. Unlike CBD however, CBC has no effect on the psychoactive effects of THC. Rather, it appears that THC influences CBC in a way that enhances its anti-inflammatory activity.
This interplay between two cannabinoids, in this case, THC and CBC, is a good example of the phenomenon researchers call the “ensemble effect.” The ensemble effect postulates that the efficacy of a given cannabinoid depends on interactions with other cannabinoids.
Hence the “whole plant” approach advocated by many cannabis caregivers. Isolated extractions and preparations of a single cannabinoid, they argue, eliminate these important inter-cannabinoid relationships.
Additionally, CBC is unique for the fact that it binds to receptors beyond those of the ECS. Researchers believe these interactions may be behind the medicinal properties of CBC. In the consumer market, CBC’s anti-inflammatory, anti-fungal and antibiotic properties make extractions of this cannabinoid popular for use in cannabis topicals.


These are just a few of the cannabanoids that make cannabis  so amazing for medical and recreational purposes.
0 Comments

5 benefits of medical cannabis

9/7/2018

0 Comments

 
1. Cannabis reduces pain and inflammationThough there are only a handful of studies available, cannabis and its many chemical compounds have shown major benefits in reducing inflammation and pain, especially for individuals with multiple sclerosis (MS), arthritis, and even internal inflammation-related gastrointestinal issues including Crohn’s disease and ulcerative colitis. Like much of the medical lore surrounding cannabis, it is made up mostly of anecdotal stories of major life improvements, even in non-clinical usage -- this only stresses the need for further studies, which are hampered by cannabis’ federally illegal status.

2. 


 Cannabis helps keep you slimDespite the cultural stereotype of stoners binging on midnight munchies, the facts seem to back up the idea that cannabis users are actually thinner and healthier (on average) than non-users. A 2011 study published in the Journal of Epidemiology made waves when it said that regular cannabis users had approximately 37% lower rates of obesity.
Though a variety of lifestyle differences may be at play here, a recent study published in the American Journal of Medicine also showed that cannabis users had lower levels of insulin to complement their smaller waistbands -- a significant finding when nearly 30 million Americans have diabetes, and an estimated 86 million are considered pre-diabetic.

3.


Cannabis reduces seizuresThis is probably the most visible medical benefit of cannabis, thanks to the plethora of videos online showing children and adults suffering from Dravet’s Syndrome and other epileptic disorders thriving after finally seeing reduced seizures thanks to cannabis treatments (primarily using CBD only, which we'll touch on later). The terpenes present in cannabis also have anticonvulsant properties, and linalool in particular has been shown to possess this trait.

4.

 Cannabis improves lung functionUnlike tobacco smoke, cannabis smoke seems to counteract much of the negative effects of inhaling smoke in general thanks to its anti-inflammatory and expectorant (mucous thinning) properties. Moderate marijuana use appears to have no adverse effect on pulmonary function, and in fact seems to improve lung function at low doses in most users. What's more, THC has been shown to ease bronchial restriction -- which, if you're an asthma sufferer, could be huge.



5. Cannabis can help fight cancerMany cancer patients struggle with the decision to take radiation or chemotherapy, in large part because the treatments are almost as bad as the disease in terms of quality of life. Luckily, the cannabis plant comes loaded with THC, CBD, and a host of other cannabinoids (there are hundreds), as well as terpenoids and flavonoids, all of which have medical properties of their own. These elements work together harmoniously to give natural cannabis its unique properties, while synthetic alternatives like Marinol only replicate one piece of the puzzle (THC).
Aside from literally killing cancer cells and shrinking the blood vessels that supply tumors, cannabis has also been shown to work in tandem with chemotherapy to more effectively fight cancer growth and preserve healthy cells. It also aids in stimulating appetite with its classic “munchies” effect and calming nausea, which may help the nutritional issues of many chemotherapy and radiation patients who struggle to eat at all because of the severe nausea and general malaise.
0 Comments

How Does Cannabis Effect The Brain?

9/7/2018

0 Comments

 
Cannabis contains at least 60 types of cannabinoids, chemical compounds that act on receptors throughout our brain. THC, or Tetrahydrocannabinol, is the chemical responsible for most of marijuana’s effects, including the euphoric high. THC resembles another cannabinoid naturally produced in our brains, anandamide, which regulates our mood, sleep, memory, and appetite.
Essentially, cannabinoids’ effect on our brains is to keep our neurons firing, magnifying our thoughts and perception and keeping us fixed on them (until another thought takes us on a different tangent). That’s why when you’re high, it’s really not a good time to drive, study for a test, or play sports that require coordination, like tennis or baseball. Like alcohol, caffeine, and sugar, cannabinoids also affect the levels of dopamine in our brain, often resulting in a sense of relaxation and euphoria.

A 2012 review of available research, however, published in the Journal of Addiction Medicine, finds that the immediate impairments on memory and concentration, at least, aren’t likely permanent:
  • Attention/concentration: Marijuana impairs light users’ attention and concentration but doesn’t appear to affect regular or heavy users within six hours of smoking or ingesting it. In the long run, researchers have found that after 3 weeks or more since last using marijuana, subjects’ attention and concentration return to normal. “In five of seven studies, no attention or concentration impairments were found in subjects who had remained abstinent from 28 days to one year (Lyons et al., 2004; Pope et al., 2001; 2002; 2003; Verdejo-Garcia et al., 2005).” The other two studies found differences in attention and concentration between heavy and non-users after 28 days, but the reviewers note that the disparate findings could be due to measuring different types of processing skills.
  • Working memory: Several studies likewise found no residual or long-term effects on working memory. A 2002 study, for example, tested 77 heavy smokers for days after abstaining from smoking pot. Memory impairment was found for heavy users up to 7 days after using marijuana, but by day 28 their memory test results didn’t differ significantly from control subjects. In other words, even if your memory is affected when you smoke up, after you stop it will likely go back to normal with time.
The Substance Abuse and Mental Health Services Administration (SAMHSA) has a brochure on the possible short- and long-term consequences of using marijuana. It reports that there’s no strong link between frequency of marijuana use and violence or crime, an unclear or weak link between depression and marijuana use, and no clear link between marijuana use and birth defects. 




​

​

0 Comments

    Author

    Jason Baudendistel is an Author and Entrepereneur who truly believes cannabis saved his life. His passion is for cannabis education and legalization.

    Archives

    February 2019
    January 2019
    October 2018
    September 2018

    Categories

    All

    RSS Feed

Site powered by Weebly. Managed by Namecheap
  • Home
  • About
  • Contact
  • Blog